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Why Homogeneity and
Interdependence?

How is an individual similar to or different from their spouse
in thought, behavior or affect (e.g., shared norms)?

Similarity can be operationalized by shared variance and
correlated error

How do couple members influence each other?

Influence can be operationalized by regression paths

Bottom line: We shouldn’t analyze data from dyads as
individuals
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Interdependence

• We know about temporal dependence (time series,
repeated measures, growth curves) and multivariate
structure (factor and SEM models)

• We weaker intuitions about interdependence due to social
interaction or pairing

• We have good statistical models for each (e.g., HLM,
SEM, latent growth curves), but lack a complete
understanding of how these frameworks interrelate
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Desiderata for a General Framework

single conceptual framework for relations due to time,
grouping, and multiple variables.

should handle covariates and common procedures such as
mediation and moderation.

flexible estimation and testing procedures (GLS, ML, REML,
MCMC, bootstrap); deal with missing data and sample
weights; deal with different distributions and models (e.g.,
generalized linear models, generalized additive models)

easy to use with standard designs but flexible to deal with
nonstandard design elements
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Nonindependence

Correlations due to

• temporal clustering

• variable clustering

• interpersonal clustering
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Intraclass Correlation

The intraclass correlation will have the leading role in this
play.

We’ll denote it as

rxx′



Intraclass Correlation & Waldo

rxx′



Intraclass Correlation

ANOVA/HLM Language: Two level model approach

Yij = βi + εij
βi = µ+ πi

Intraclass correlation is given by

rxx′ =
σ2
π

σ2
π + σ2

ε

A proportion interpretation.
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Intraclass Correlation: Another
approach

ANOVA/HLM Language: Two level model

Yij = βi + εij

βi = µ+ πi

Intraclass correlation is given by

rxx′ =
σ2
π

σ2
π + σ2

ε



The Nested Individual



Symbolic representation for the
pairwise setup

The first subscript represents the dyad and the second
subscript represents the individual.

Variable
Dyad # X X′

1 X11 X12

X12 X11

2 X21 X22

X22 X21

3 X31 X32

X32 X31

4 X41 X42

X42 X41



Concrete Illustration of the Pairwise
Coding

Dyad # X X′

1 Amos Bram
Bram Amos

2 Carl Dan
Dan Carl

3 Ed Frank
Frank Ed

ETC
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Pairwise Plots
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Pairwise Intraclass for the
Exchangeable Case

ML intraclass correlation = Pearson correlation between
variable X and X′

The significance test (against a null hypothesis of zero) is
simply

Z = rxx′
√
n

where Z is asymptotically normally distributed and n is the
number of dyads.



Symbolic representation for the
pairwise setup

The first subscript represents the dyad and the second
subscript represents the individual. Categorization of
individuals as 1 or 2 is based on the class variable C.

Variable
Dyad # C X X′

1 1 X11 X12

2 X12 X11

2 1 X21 X22

2 X22 X21

3 1 X31 X32

2 X32 X31

4 1 X41 X42

2 X42 X41



Pairwise Intraclass for the
Distinguishable Case

Compute the partial correlation between variable X and the
“reverse coded” version of X, partialling out the person code
C.

The partial pairwise intraclass correlation is given by

rxx′.c =
rxx′ − rcxrcx′√

(1− rcx2)(1− rcx′2)



Intraclass Correlation
The structural model for the exchangeable case is

Yij = µ+ πi + εij

where π is a random effect. The parameter π represents the
“dyad effect.” Equivalent to a one-way random-effects
ANOVA with “dyad” as the factor.

The structural model for the distinguishable case is

Yijk = µ+ πi + αj + εijk

where π is a random effect and α is a fixed effect. The
parameter π represents the “dyad effect” and the parameter α
represents the effect on the “distinguishable” variable.
Equivalent to a two-way ANOVA with “dyad” as a
random-effects factor.



The standard definition of the intraclass correlation is

ρI =
MSB−MSE

MSB + (k - 1)MSE

The terms MSB and MSE are from the ANOVA source table,
and k represents the number of people in the “group” (i.e., in
dyads k = 2).

The same formula is used whether a one-way ANOVA
(exchangeable case) or a two-way ANOVA (distinguishable
case) is used.

The intraclass correlation compares the variability between
dyads v. the variability within dyads.



But the ANOVA approach is difficult to work work with. . .

1. tedious to generalize to many variables

2. not easy to develop intuition for the relevant mean square
terms and to connect the parameters to meaningful
psychological statements.

3. not easy to develop tests of significance

The ANOVA approach can be generalized through
“hierarchical linear models” (HLM).

The pairwise approach is a special case of HLM when all
groups have the same size (as in dyads), i.e., in the case of
dyads the pairwise approach is identical to HLM.
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In the special case of dyads the pairwise intraclass correlation
is

ρp =
SSB - SSE

SSB + SSE

Pairwise ICC = ML
ANOVA ICC = REML
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CODE

SPSS

MIXED dv BY person
/fixed person
/print solution testcov
/repeated = person | SUBJECT(dyad) covtype(CS).

/METHOD = ML OR REML



Dyadic Correlation Between Two
Variables

Example: Trust and Satisfaction from each couple member

• how much do you trust your partner

• how satisfied are you with your marriage

What is the relation between trust and satisfaction?



How would you approach this analysis problem?

1. correlate the trust scores with the satisfaction scores
ignoring group membership

2. correlate mean trust score (within couple) with mean
satisfaction score

There are problems with these two correlations!

The first confounds dyad-level effects and the second
confounds individual-level effects.

Thus, these two correlations are indeterminate as to the
“psychological” mechanisms they represent.
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Symbolic representation for the
pairwise setup for two variables

Variable
Dyad # C X X′ Y Y′

1 1 X11 X12 Y11 Y12

2 X12 X11 Y12 Y11

2 1 X21 X22 Y21 Y22

2 X22 X21 Y22 Y21

3 1 X31 X32 Y31 Y32

2 X32 X31 Y32 Y31

4 1 X41 X42 Y41 Y42

2 X42 X41 Y42 Y41



Graphical Representation of the
Correlations
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According to the model, the two observed correlations
decompose as

rxy =
√
rxx′ rd

√
ryy′ +

√
1− rxx′ ri

√
1− ryy′

and

rxy′ =
√
rxx′ rd

√
ryy′ .

With these decompositions, simple algebra solves for ri and
rd.

ri =
rxy − rxy′

√
1− rxx′

√
1− ryy′

and

rd =
rxy′

√
rxx′
√
ryy′

.
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Example: Individual and Dyad Level
Relationship

Frequency of verbalization and frequency of gaze.

ri rd
Strangers -.33 .68
Friends .14 .30



CODE

SAS
proc calis cov edf=N-1 se method=mls residual pcorr;
lineqs
v1 = 1 F1 + E1,
v2 = 1 F1 + E2,
v3 = 1 F2 + E3,
v4 = 1 F2 + E4;

STD
F1-F2 = v1 v2,
E1-E4 = x1 x1 x2 x2;

COV
F1 F2 = rd,
E1 E3 = ri,
E2 E4 = ri;
run;

Cov matrix as input; state N.



CODE

Mplus
Title: SEM model;
Data: File = G:\FTS\files from Rich\SEM data L3.dat;
variable: names = ID x1 x2 y1 y2;
USEV = x1 x2 y1 y2;
Analysis: type = meanstructure;
model:

x by x1@1 x2@1;
y by y1@1 y2@1;
x1 x2 (1);
y1 y2 (2);
[x1 x2] (4);
[y1 y2] (5);
x1 with y1 (3);
x2 with y2 (3);
x with y;

output: sampstat standardized;



Correlation Between Dyad Means

rm =
rxy + rxy′

√
1 + rxx′

√
1 + ryy′

rm can be positive under different combinations of rxy and
rxy′ .

rm reflects a combination of individual and dyad level
processes, and should not be routinely interpreted as reflecting
only dyad level processes.



Latent Variable Model: HLM Lingo

Three-level model: one level for the variable, one level for
individual effect, and one level for group effect.

Yijk = β0X0 + β1X1

β0 = µ0 + π0 + ε0
β1 = µ1 + π1 + ε1

π ∼ N

(
0,
[

Vπ0 Cπ0π1

Cπ0π1 Vπ1

])
ε ∼ N

(
0,
[

Vε0 Cε0ε1
Cε0ε1 Vε1

])



Alternative Model: Interdependence

The degree to which one individual influences another (e.g.,
Lewin).

This influence need to occur face-to-face:

We have a good time together, even when we’re not
together. Yogi Berra



Kelley & Thibaut: Early APIM

Interaction separated into three types of control or influence

1. actor effect (reflexive)

2. partner effect (fate)

3. mutual effect (behavior)
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APIM is a Pairwise Model

Y = β0 + β1X + β2X
′ + β3XX

′

such that

• predictor X represents the actor’s influence on the actor’s
Y,

• predictor X′ represents the partner’s influence on the
actor’s Y,

• the product XX′ represents the mutual influence of both
people on the actor’s Y.



Example: Generalized Pairwise
Model

Regress frequency of smiles/laughter on frequency of
verbalization

• Strangers: partner’s verbalization frequency on actor’s
laughter—the more the other talks, the more the actor
smiles

no other effects

• Friends: actor’s verbalization frequency on the actor’s
laughter—the more I talk, the more I smile)

no other effects
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Actor-partner model: The ICC again

Y = β0 + β1X + β2X
′

such that

• actor’s X predicts actor’s Y and
• partners X (denoted X′) predicts actor’s Y

The actor regression coefficient can be expressed in terms of
pairwise correlations

β1 =
sy(rxy − rxy′rxx′)

sx(1− r2
xx′)

Similarly, the partner regression coefficient is

β2 =
sy(rxy′ − rxyrxx′)

sx(1− r2
xx′)
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Variance of β related to the ICC

The variance of the actor β is

V (βactor) =
s2
y(r

2
xy′r2

xx′ − rxx′ryy′ + 1− r2
xy′)

2Ns2
x(1− r2

xx′)



Longitudinal Models

Get complicated.

Different ways of representing change in a single person, now
there are two individuals.

If data have multiple variables, then there are temporal,
multivariate and interpersonal relations.



One Person:
McArdle’s Bivariate Latent

Difference Model



Person 1

Person 2



across time are nested within individuals. Put another way, occa-
sion is the Level 1 or lower-level unit and person is the Level 2 or
upper-level unit. Conceptually, a multilevel analysis begins by
conducting a within-person regression analysis for each child in
the data set such that conflict scores serve as the dependent
variable (Yij, with i � 1 to n denoting child, and j � 1 to 4 denoting
the four levels of time) and time of measurement serves as the
independent variable. This gives the following lower level equa-
tion:

Yij � b0i � b1iTij � eij

where Tij is the time of measurement (taking on values 0, 2, 4, and
6) for child i at time j. Given that time is scaled to be zero at the
initial assessment, the intercept from this equation, b0i, is an
estimate of child i’s initial conflict score, and the slope, b1i,
measures the child’s change in conflict over a 1-year period. A
positive slope indicates an increase in conflict over time, and a
negative slope indicates that conflict decreases over time. The
error represents the part of child i’s conflict score at time j that is
not predicted by the time variable.

Continuing with the multilevel approach, in a basic growth
model (i.e., one without any moderating person-level, or Z, vari-
ables) the lower level intercepts and slopes are aggregated across
the sample as follows:

b0i � a0 � u0i

b1i � c0 � u1i.

These models result in two fixed-effect estimates: a0, which
measures the average intercept (i.e., the average conflict score at
age 11 when time � 0) and c0, which measures the average slope
(i.e., the average change in conflict for 1 year). In addition to these
two fixed effects, the multilevel framework yields two random
effects. The variance for the intercept is based on the variance of
u0i and represents how much children vary in their conflict scores
at age 11. The variance for the slope is based on the variance of u1i

and measures the degree to which children vary in their rate of

linear change in conflict. Additionally, these two random effects
may be correlated, and so there may be a covariance between the
intercept and slope. This covariance measures the degree to which
individuals who start with higher conflict scores at age 11 change
more rapidly (or slowly) than those who start with lower conflict
scores at age 11.

Figure 1 shows a typical linear growth model for these data from
the perspective of a path diagram, a common starting point for
SEM analyses. In this model, the four observations of conflict are
treated as indicators of two latent variables, an intercept variable
and a slope variable. To identify the intercept variable, we fixed
the unstandardized path coefficients to each indicator to 1.0. To
identify the slope variable, we fixed the unstandardized path co-
efficient for the age 11 observation to 0. This defines the intercept
variable as the value of conflict at age 11. The remaining unstand-
ardized slope paths to the age 13, 15, and 17 observations are fixed
to 2, 4, and 6, respectively. This specification defines the slope
variable as the change in conflict for each 1-year increase in time.
In addition to the usual assumption that the errors have zero means,
the intercepts of the observed variables are also set to 0 in order to
identify the mean structure of the model.

As can be seen in Figure 1, the growth model in the SEM
framework includes the same basic parameters as the growth
model in the MLM framework: an average intercept and an aver-
age slope, a variance for the intercept and a variance for the slope,
as well as a covariance between the intercept and slope. One
difference between the MLM approach and the SEM approach is
that the error structure for the residuals is an explicit feature of the
model. In particular, as displayed in the figure, the residuals are
allowed to have unequal variances across time. In contrast, the
variances for the residuals are typically constrained to the same
value in the MLM approach, although alternative specifications are
possible. Likewise, it is very easy to constrain the variances for the
residuals to the same value in SEM. Researchers who estimate
models in any framework should be aware of the constraints that
are imposed on the residuals because this is often where we see the

Conflict
15 years old

Conflict
17 years old

Conflict
13 years old

Conflict
11 years old

0, var(e1)

e1
1

0, var(e2)

e2
1

0, var(e3)

e3
1

0, var(e4)

e4
1

Mean = a0, Var(u0i)

Intercept

Mean = c0, Var(u1i)

Slope

1

1

1

1

6

4

2
0 Cov (u0i, u1i)

Figure 1. Basic growth model for individuals. a � average intercept; c � average slope; e � residual variance;
u0i � the random component for the intercepts; u1i � the random component for the slopes.
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Shared Variance Intercept/Slope

mated using what Olsen and Kenny (2006) called the saturated
model for indistinguishable dyads (I-SAT) model, which is de-
picted in Figure 3. As is evident in Figure 3, the defining feature
of the I-SAT model is that a series of equality constraints are made
on the means, variances, and covariances for the two indistinguish-
able dyad members. If the number of observed variables in the
model for each dyad member is q (e.g., in our example q � 3), then
the I-SAT model has q(q � 1) constraints, and so there are 12
constraints for the example. Given that there are a total of 2q (i.e.,
6) observed variables, the number of available pieces of informa-
tion equals 27, the number of estimated parameters equals 15, and
so the I-SAT model has 12 degrees of freedom.4

The chi-square value generated by the I-SAT model estimates
the degree of arbitrary model misfit. This value should be sub-
tracted from the chi-square value generated by estimating the
latent growth model (i.e., Figure 2) before evaluating the overall fit
of the dyadic growth model. Thus, the appropriate test of exact fit
for the latent growth model with indistinguishable dyads is a
chi-square difference test, subtracting off the chi-square from the
I-SAT model, with a corresponding subtraction of the degrees of
freedom. Olsen and Kenny (2006) provided formulas for comput-
ing other measures of model fit (e.g., the root-mean-square error of
approximation [RMSEA]) for indistinguishable dyads based on the
I-SAT correction.

Growth Models of Twins’ Conflict With Mothers
Using MLM

Although there are a number of statistical packages that can be
used for MLM (e.g., HLM 6.0, Raudenbush, Bryk, Cheong, &

Congdon, 2004; MLwiN, Rasbash, Steele, Browne, & Prosser,
2004; SAS’s PROC MIXED and SPSS MIXED), to the best of our
knowledge, a growth model with indistinguishable dyads that
includes all of the required equality constraints can most directly
be estimated using SAS’s PROC MIXED or MLwiN.5 Our dis-
cussion and our online Appendix uses PROC MIXED in SAS
because it is more readily available.

MLM with overtime dyadic data requires that the data be
organized in what is called a person-period structure (Singer &
Willett, 2003; see Table 2). A person-period data set has one
record for each person at each time point. Thus, with our example
data, each twin pair would have six records in the data set—three
for each individual representing his or her conflict with mother at
ages 11, 14, and 17. There should also be a variable representing
dyad membership (Dyad ID), along with a variable denoting which
of the two persons generated the conflict score for that record
(Person ID). Two dummy variables (P1 and P2) need to be created
on the basis of the Person ID variable: P1 � 1 if the conflict score

4 As an aside, the evaluation of the fit of the I-SAT model is equivalent
to the omnibus test of distinguishability, which tests whether twins who are
classified as As are statistically different from twins who are classified as
Bs. A significant chi-square test statistic for the I-SAT model means that
there is evidence of empirical distinguishability. In such a case, researchers
should not use the methods outlined in this article and instead should use
methods described in Kashy and Donnellan (2008).

5 Duncan et al. (2006, chap. 7) presented a three-level parameterization
of the dyadic growth model that could be estimated using other MLM
programs such as SPSS MIXED and Stata.
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Figure 2. Basic dyadic growth model for indistinguishable dyads. TA � Twin A; TB � Twin B; Mi � mean
intercept value; Ms � mean slope; Vi � intercept variance; Vs � slope variance; Wis � within-person
covariance between the intercept and slope; Bis � between-persons covariance; ii � intercept–intercept
covariance; ss � slope-slope covariance; E � error or residual component for the ratings; e � variance of the
residuals; ee � covariance of the residuals at a specific time point across the two twins.

321SPECIAL SECTION: INDISTINGUISHABLE DYADIC GROWTH MODELS



Which Programs to Use?

Multilevel models provide one unified approach to dyadic and
longitudinal models.

Advantages: Arbitrary nested models with multiple levels of
analysis

Disadvantages: Models can be complicated to implement
and interpret, constraints can’t easily be set



Which Programs to Use?

SEM provides another unified approach to dyadic and
longitudinal models.

Advantages: Multiple variables easy to handle

Disadvantages: Difficult to implement unequal size groups;
longitudinal designs can get complicated



Prescriptions

• Violation of independence is not a problem

• Follow your research question

• Not completely a matter of choosing a statistical
technique; more important to think about design and
research question



A book devoted to dyadic data
analsys:

Kenny, D., Kashy, D., & Cook, W. (2006). Dyadic Data
Analysis. Guilford Press.



Interdependence Mantra

Study
Model

Celebrate

Interdependence



Thanks

For more detail send me an email (gonzo@umich.edu) or check
out the link

http://www.umich.edu/~gonzo

(in a few days).
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