Here is the CMT Uptime check phrase

Richard GonzalezRichard Gonzalez

Center Director, Research Center for Group Dynamics, Institute for Social Research
Director, BioSocial Methods Collaborative, RCGD
Amos N Tversky Collegiate Professor, Psychology and Statistics, LSA
Professor of Marketing, Stephen M Ross School of Business
Professor of Integrative Systems and Design, College of Engineering


E-mail: Email Richard Gonzalez
Address: Research Center for Group Dynamics
Institute for Social Research
University of Michigan
426 Thompson Street
Ann Arbor, Michigan 48106
Phone: 734-647-6785

The runner’s bounce and their performance

Oct 6, 2023 | Announcements, Psychology, Statistics/Methods

Burns, G., Gonzalez, R., Zendler, J., & Zernicke, R. (2021). Bouncing behavior of sub-four minute milers. Scientific Reports, 11. doi:10.1038/s41598-021-89858-1 PDF


Elite middle distance runners present as a unique population in which to explore biomechanical phenomena in relation to running speed, as their training and racing spans a broad spectrum of paces. However, there have been no comprehensive investigations of running mechanics across speeds within this population. Here, we used the spring‐mass model of running to explore global mechanical behavior across speeds in these runners. Ten elite‐level 1500 m and mile runners (mean 1500 m best: 3:37.3 ± 3.6 s; mile: 3:54.6 ± 3.9 s) and ten highly trained 1500 m and mile runners (mean 1500 m best: 4:07.6 ± 3.7 s; mile: 4:27.4 ± 4.1 s) ran on a treadmill at 10 speeds where temporal measures were recorded. Spatiotemporal and spring‐mass characteristics and their corresponding variation were calculated within and across speeds. All spatiotemporal measures changed with speed in both groups, but the changes were less substantial in the elites. The elite runners ran with greater approximated vertical forces (+ 0.16 BW) and steeper impact angles (+ 3.1°) across speeds. Moreover, the elites ran with greater leg and vertical stiffnesses (+ 2.1 kN/m and + 3.6 kN/m) across speeds. Neither group changed leg stiffness with increasing speeds, but both groups increased vertical stiffness (1.6 kN/m per km/h), and the elite runners more so (further + 0.4 kN/m per km/h). The elite runners also demonstrated lower variability in their spatiotemporal behavior across speeds. Together, these findings suggested that elite middle distance runners may have distinct global mechanical patterns across running speeds, where they behave as stiffer, less variable spring‐mass systems compared to highly trained, but sub‐elite counterparts.